Enter the Anthropocene—Age of Man
It’s a new name for a new geologic epoch—one defined by our own massive impact on the planet. That mark will endure in the geologic record long after our cities have crumbled. By Elizabeth Kolbert
Photograph by Jens Neumann/Edgar Rodtmann

The path leads up a hill, across a fast-moving stream, back across the stream, and then past the carcass of a sheep. In my view it’s raining, but here in the Southern Uplands of Scotland, I’m told, this counts as only a light drizzle, or smirr. Just beyond the final switchback, there’s a waterfall, half shrouded in mist, and an outcropping of jagged rock. The rock has bands that run vertically, like a layer cake that’s been tipped on its side. My guide, Jan Zalasiewicz, a British stratigrapher, points to a wide stripe of gray. “Bad things happened in here,” he says.

The stripe was laid down some 445 million years ago, as sediments slowly piled up on the bottom of an ancient ocean. In those days life was still confined mostly to the water, and it was undergoing a crisis. Between one edge of the three-foot-thick gray band and the other, some 80 percent of marine species died out, many of them the sorts of creatures, like graptolites, that no longer exist. The extinction event, known as the end-Ordovician, was one of the five biggest of the past half billion years. It coincided with extreme changes in climate, in global sea levels, and in ocean chemistry—all caused, perhaps, by a supercontinent drifting over the South Pole.

Stratigraphers like Zalasiewicz are, as a rule, hard to impress. Their job is to piece together Earth’s history from clues that can be coaxed out of layers of rock millions of years after the fact. They take the long view—the extremely long view—of events, only the most violent of which are likely to leave behind clear, lasting signals. It’s those events that mark the crucial episodes in the planet’s 4.5-billion-year story, the turning points that divide it into comprehensible chapters.

So it’s disconcerting to learn that many stratigraphers have come to believe that we are such an event—that human beings have so altered the planet in just the past century or two that we’ve ushered in a new epoch: the Anthropocene. Standing in the smirr, I ask Zalasiewicz what he thinks this epoch will look like to the geologists of the distant future, whoever or whatever they may be. Will the transition be a moderate one, like dozens of others that appear in the record, or will it show up as a sharp band in which very bad things happened—like the mass extinction at the end of the Ordovician?

That, Zalasiewicz says, is what we are in the process of determining.

The word “Anthropocene” was coined by Dutch chemist Paul Crutzen about a decade ago. One day Crutzen, who shared a Nobel Prize for discovering the effects of ozone-depleting compounds, was sitting at a scientific conference. The conference chairman kept referring to the Holocene, the epoch that began at the end of the last ice age, 11,500 years ago, and that—officially, at least—continues to this day.

“‘Let’s stop it,’” Crutzen recalls blurting out. “‘We are no longer in the Holocene. We are in the Anthropocene.’ Well, it was quiet in the room for a while.” When the group took a coffee break, the Anthropocene was the main topic of conversation. Someone suggested that Crutzen copyright the word.

Way back in the 1870s, an Italian geologist named Antonio Stoppani proposed that people had introduced a new era, which he labeled the anthropozoic. Stoppani’s proposal was ignored; other scientists found it unscientific. The Anthropocene, by contrast, struck a chord. Human impacts on the world have become a lot more obvious since Stoppani’s day, in part because the size of the population has roughly quadrupled, to nearly seven billion. “The pattern of human population growth in the twentieth century was more bacterial than primate,” biologist E. O. Wilson has written. Wilson calculates that human biomass is already a hundred times larger than that of any other large animal species that has ever walked the Earth.

In 2002, when Crutzen wrote up the Anthropocene idea in the journal Nature, the concept was immediately picked up by researchers working in a wide range of disciplines. Soon it began to appear regularly in the scientific press. “Global Analysis of River Systems: From Earth System Controls to Anthropocene Syndromes” ran the title of one 2003 paper. “Soils and Sediments in the Anthropocene” was the headline of another, published in 2004.

At first most of the scientists using the new geologic term were not geologists. Zalasiewicz, who is one, found the discussions intriguing. “I noticed that Crutzen’s term was appearing in the serious literature, without quotation marks and without a sense of irony,” he says. In 2007 Zalasiewicz was serving as chairman of the Geological Society of London’s Stratigraphy Commission. At a meeting he decided to ask his fellow stratigraphers what they thought of the Anthropocene. Twenty-one of 22 thought the concept had merit.

The group agreed to look at it as a formal problem in geology. Would the Anthropocene satisfy the criteria used for naming a new epoch? In geologic parlance, epochs are relatively short time spans, though they can extend for tens of millions of years. (Periods, such as the Ordovician and the Cretaceous, last much longer, and eras, like the Mesozoic, longer still.) The boundaries between epochs are defined by changes preserved in sedimentary rocks—the emergence of one type of commonly fossilized organism, say, or the disappearance of another.

The rock record of the present doesn’t exist yet, of course. So the question was: When it does, will human impacts show up as “stratigraphically significant”? The answer, Zalasiewicz’s group decided, is yes—though not necessarily for the reasons you’d expect.

CONTINUE READING
Drape Over Troubled Water?Photograph by Jason Miller, AP

In an artist’s illustration, fabric panels drape over metal beams that span the width of the river.

Opponents disagree with Christo’s assurances that the project’s effects on the environment will be temporary.

"While true that the actual exhibit is only for two weeks, the process to construct, assemble, and remove the structure would take two and a half years or more—leaving behind 9,100 steel rock anchors permanently implanted in the canyon walls," said Carol Neville, a member of ROAR.

"This extended time frame will create adverse impacts that will linger for years afterward."

Photograph by Michael Walker

Feat: Completing the highest altitude long-distance swim ever in an attempt to raise awareness of global climate change
British swimmer and environmentalist Lewis Gordon Pugh traveled to the Himalaya in May 2010 to attempt a long-distance swim that many thought was impossible. On May 22, wearing just his customary Speedo, swimming cap, and goggles, Pugh plunged into the frigid waters of Lake Pumori, located not far from Mount Everest at 17,700 feet (5,400 meters), and swam one kilometer, setting a new record for the highest altitude long-distance swim. Best known for swimming across the geographic North Pole back in 2007, Pugh overcame altitude sickness—and what he called “the most frightening day” of his swimming career—to complete his task, which he hopes will help raise awareness for the shrinking Himalayan glaciers.
In the Field: May 2010
—by Kraig Becker

(Source: National Geographic)

Take a water tour with us through your home, garden, diet, energy use, and your stuff! Then, pledge to cut your water footprint by 20%.

Know this: The average American lifestyle is kept afloat by nearly 2,000 gallons of H2O a day—twice the global average.

The bright side: By pledging to cut your water footprint, you can enter to win water-friendly prizes from Expedition Blue Planet.

Ready for the challenge? Let’s get started…

Your shampoo may seem harmless, but it could be contributing to the formation of a mysterious, cancer-causing substance, a new study says.

New research reveals that common household products such as shampoo can interact with disinfectants at U.S. wastewater treatment plants to form a little-studied class of cancer-causing substances. These substances, called nitrosamines, can end up in drinking water, experts say.

Some oil from the Gulf of Mexico spill is “increasingly likely” to be dragged into a strong current that hugs Florida’s coasts, National Oceanic and Atmospheric Administration (NOAA) officials said today.

But other experts say that the oil is already there—satellite images show oil caught up in one of the eddies, or powerful whorls, attached to the Loop Current, a high-speed stream that pulses north into the Gulf of Mexico and travels in a clockwise pattern toward Florida.

Images from the past few days show a “big, wide tongue” of oil reaching south from the main area of the spill, off the coast of Louisiana, said Nan Walker, director of Louisiana State University’s Earth Scan Laboratory, in the School of the Coast and Environment.

Read More…